Object Initiation

Three functions are needed to set up a fully functional cypro object.

designExperiment()

Object initiation: Step 1

loadDataFile() loadDataFiles()

Object initiation: Step 2

processData()

Object initiation: Step 3

Object Summary and Information

Keep track of progress and set up by printing summaries in the console.

printSubsetHistory()

Print subset information

printSummary() printAnalysisSummary()

Print object summary

Object Loading and Saving

Some handy functions that make saving and loading corresponding objects more convenient.

saveCyproObject()

Save cypro object

Object Subsetting

Create cypro object from data subsets for more in depth analysis.

subsetByCellId()

Create data subset by cell ids

subsetByCellLine()

Create data subset by cell lines

subsetByCluster() subsetByGroup()

Create data subset by cluster

subsetByCondition()

Create data subset by conditions

subsetByFilter()

Create data subset by specified requirements

subsetByNumber()

Create data subset by reducing the number of cells

subsetByQuality()

Create data subset according to coverage quality

Object Manipulation

cypro invites you to extract your analysis and to add the results of your analysis. Constant change of the object’s content is therefore inevitable. The following functions serve as handy, helping hands to add cypro extern content to the object without disturbing it’s integrity regarding cypro intern processes.

Set Content

The set-functions let you set the content of specific slots.

setCellDf()

Set cell data.frame

setClusterConv() setDimRedConv() setCorrConv()

Set analysis objects

setDefaultInstructions()

Set cypro default

setGroupingDf()

Set data data.frames

setStorageDirectory()

Set default storage directory

Add Content

The add-functions let you add content to the cypro object.

addClusterVariables() addMetaVariables()

Add discrete/categorical variables that group the cells

addHierarchicalClusterVariables()

Add hierarchical clustering results to overall data

addKmeansClusterVariables()

Add kmeans clustering results to overall data

addPamClusterVariables()

Add PAM clustering results to overall data

addStatVariables()

Add numeric variables

addVariableSet()

Add predefined set of variables

Discard Content

The discard-functions let you delete unwanted information savely.

discardClusterVariables() discardMetaVariables()

Discard unwanted variables from your data

discardDistanceMatrix()

Discard calculated distance matrix

discardStatVariables() keepStatVariables()

Discard unwanted variables from your data

Adjust Content

The adjust-functions let you adjust content of the cypro object without overwriting it in it’s essence.

adjustableDefaultInstructions()

Valid default arguments

adjustDefaultInstructions()

Adjust object based default

Rename Content

The rename-functions let you adjust the names of data variables and of groups.

renameClusterDf() renameClusterDfWith()

Rename cluster variables

renameGroups()

Rename groups

renameMetaDf() renameMetaDfWith()

Rename meta variables

renameStatsDf() renameStatsDfWith()

Rename statistic variables

renameTracksDf() renameTracksDfWith()

Rename track variables

Extract Data

cypro invites you to extract your analysis. get-functions let you access every imaginable aspect of information conveniently.

Data frames

A lot of data comes in form of tidy data.frames.

getBatchEffectDf() getBatchEffectDist()

Obtain batch effect computation results

getGroupingDf() getClusterDf() getMetaDf() getWellPlateDf()

Obtain grouping information

getMissingValuesDf()

Obtain missing value counts

getSetUpDf()

Obtain well plate set up

getStatsDf()

Obtain stat data.frame

getTracksDf()

Obtain track data.frame.

getVariableDf()

Obtain variable centered summaries

mutateClusterDf() mutateMetaDf() mutateStatsDf()

Create and modify data variables

mutateTracksDf()

Create and modify data variables

Data variable names and group names

Functions that return object dependent input options for different arguments.

getGroupingVariableNames() getClusterVariableNames() getMetaVariableNames() getWellPlateVariableNames()

Obtain grouping variable names of cell data

getStatVariableNames() getTrackVariableNames()

Obtain numeric variables of cell data

getGroups() getGroupNames()

Obtain group names a grouping variable contains

Names and content of variable sets

Keep track of your data variables by gathering them to variable sets.

getVariableSet() getVariableSets() getVariableSetNames()

Obtain defined sets of variables

Analysis results

Extract analysis results for cypro extern analysis.

getHclustConv() getHclustObject() getKmeansConv() getKmeansObject() getPamConv() getPamObject()

Obtain cypros clustering objects

getCorrConv() getCorrObject()

Obtain cypros correlation objects

getPcaConv() getPcaObject() getTsneConv() getTsneObject() getUmapConv() getUmapObject()

Obtain dimensional reduction objects

Outlier detection

getOutlierResults() getOutlierIds()

Obtain outlier detection results

getOutlierWells()

Obtain possible outlier wells

Miscellaneous

nCells() nCellLines() nConditions()

Number of miscellaneous content

nFiles()

Number of files read in

nMissingValuesStats()

Number of NAs by cell id (in stats)

nMissingValuesTracks()

Number of NAs by cell id (in tracks)

Quality Check

Clean your data before conducting analysis with common quality checks.

Outlier detection

detectOutliers()

Detect outlier cells

removeOutliers()

Remove outliers from object

Batch effect detection

detectBatchEffects()

Detect batch effects

plotBatchHeatmap()

Visualize possible batch effects

Analysis and Profiling

Leverage convenient implementations of several machine learning algorithms to cluster and profile your cells.

Dimensional reduction

runPca() runTsne() runUmap()

Compute dimensional reductions

Clustering

initiateHierarchicalClustering() initiateKmeansClustering() initiatePamClustering()

Set up clustering objects with cypro

computeDistanceMatrices()

Compute distance matrices

agglomerateHierarchicalCluster()

Agglomerate hierarchical cluster

computeKmeansCluster()

Compute cluster with kmeans

computePamCluster()

Compute cluster with partitioning around medoids (PAM)

Correlation

initiateCorrelation()

Set up correlation with cypro

correlateAll() correlateAcross()

Compute correlation between variables

Visualization and Animation

Statistics and common plots

plotBoxplot() plotDensityplot() plotHistogram() plotRidgeplot() plotViolinplot()

Plot numeric distribution and statistical tests

plotStatisticsInteractive()

Plot statistics related plots interactively

plotScatterplot()

Plot a scatterplot

Dimensional reduction

plotPca() plotTsne() plotUmap()

Plot dimensional reduction results

Clustering

plotScreeplot()

Plot a scree plot

plotAvgSilhouetteWidths() plotSilhouetteWidths()

Plot pam cluster quality

plotPamMedoids()

Plot medoid results

Timelapse dependent

plotTimeHeatmap()

Visualize changes of cell characteristics over time

plotTimeLineplot()

Visualize changes of cell characteristics over time

Modules

Depending on the experiment set up and the data input different modules (collections of functions) are at your your disposal.

Migration

In case of timelapse experiments that come with x- and y-coordinates you can explore cellular migration behaviour.

plotSingleTracks()

Plot single cell migration

plotAllTracks()

Plot scaled cell migration

animateAllTracks()

Animate all tracks

Valid argument input

Functions that don’t take any argument specifications but simply return valid input options for several arguments.

validAgglomerationMethods() validColorPalettes() validColorSpectra() validDistanceMethods() validKmeansMethods()

Valid input options